Preliminary communication

Optically active stibonium iodide

S. SATO, Y. MATSUMURA and R. OKAWARA Department of Applied Chemistry, Osaka University, Yamadakami, Suita, Osaka (Japan) (Received August 8th, 1973)

SUMMARY

The first preparation of an optically-active stibonium iodide, viz. (+)-PhMeEt(i-Pr)SbI, is described.

Optically active quarternary phosphonium and arsonium salts are well known and their reactions have been much studied. The preparation of the asymmetric stibonium iodide MeEtPrBuSbI has been described recently¹, but no optical resolution of an asymmetric quaternary stibonium salt has been reported². We describe below the first preparation of an optically active stibonium iodide, *viz.* (+)-PhMeEt-i-PrSbI, [(+)-I].

The stibonium iodide PhMeEt-i-PrSbI (I) was prepared by the reaction of PhMe-i-PrSb³ with triethyloxonium fluoroborate⁴ in methylene chloride, followed by treatment with potassium iodide in methanol. Compound (I) was also obtained from PhMe-i-PrSbS and Et₂ InI, which has been reported to react with Me₃SbS to give Me₃EtSbI ⁵. Treatment of (I) with silver-(-)-dibenzoylhydrogentartrate (DBHT) ⁶ in methanol, followed by recrystallization from ethyl acetate, gave PhMeEt-i-PrSb-(-)-DBHT of $[\alpha] \frac{18}{D} - 66.5^{\circ}$ (c 1.023 in methanol). Treatment of dibenzoylhydrogentartrate with. potassium iodide in methanol gave dextrorotatory stibonium iodide [(+)-I] of $[\alpha] \frac{26}{D} + 4.10^{\circ}$ (c 0.634 in methanol), which was found to be optically stable as a solid and in solution.

The properties and PMR data of the asymmetric compounds obtained are shown in Table 1.

TABLE 1

Compound	М.р. (°С)	Solvent for recrystallization	Analysis found (calcd.) (%)		PMR ^a		Assign
			c	H	δ (ppm)	J (Hz)	
PhMe-i-PrSbS b	7475	ethanol	41.24 (41.55)	5.17 (5.23)	1.42 d 1.45 d	7.5 C 7.5 C	C(CH,
					1.64 s 2.60 m		ЅЪСН, ЅЪСН
(±)-PhMeEt-i-PrSbI	117–118	methylene chloride/benzene	34.78 (34.90)	5.00 (4.88)	1.56 d 1.58 d	d 7_5 c	C(CH,
					1.54 t 2.19 s 3.13 m 3.98 m	7.5 đ	SЪСН, SЪСН, SЪСН, SЪСН,
PhMeEt+PrSb-()- DBHT ^e	115–116	ethyl acetate	55.78 (56.01)	5.28 (5.17)	1.19 d 1.20 d		с(сн,
					1.19 t 1.62 s 2.43 m 3.20 m		SbCH, SbCH, SbCH, SbCH DBHT
(+)-PhMeEt-i-PrSbI	107	methylene chloride/benzene	34.66 (34.90)	5.00 (4.88)			

THE PROPERTIES AND PMR DATA OF THE ASYMMETRIC ANTIMONY COMPOUNDS

^a In CDCl₃ at room temperature; δ (ppm) downfield from internal TMS. ^b This compound was prepared from PhMe-i-PrSbBr₂ (ref. 3) and Na₂S-9H₂O in methanol under nitrogen atmosphere. ^c $J(CH_3 - CH)$. ^d $J(CH_3 - CH_2)$ ^e DBHT = dibenzoylhydrogentartrate.

REFERENCES

- 1 H.A. Meinema, H.F. Martens and J.G. Noltes, J. Organometal. Chem., 51 (1973) 223.
- 2 G.O. Doak and L.D. Freedman, Organometallic Compounds of Arsenic, Antimony and Bismuth, Wiley, New York, 1970
- 3 S. Sato, Y. Matsumura and R. Okawara, J. Organometal. Chem., 43 (1972) 333
- 4 H. Meerwein, Org. Syn., 46 (1966) 113.
- 5 T. Maeda, G. Yoshida and R. Okawara, J. Organometal. Chem., 44 (1972) 237.
- 6 D.M. Coyne, W.E. McEwen and C.A. VanderWerf, J. Amer. Chem. Soc., 78 (1956) 3061.